
Hierarchy-Aware Regression Test Prioritization
Hao Wang
UC Berkeley

Berkeley, CA, USA
hwang628@berkeley.edu

Pu (Luke) Yi
Stanford University
Stanford, CA, USA
lukeyi@stanford.edu

Jeremias Parladorio
National University of Rio Cuarto

Rio Cuarto, Argentina
jeremiasparladorio@gmail.com

Wing Lam
George Mason University

Fairfax, VA, USA
winglam@gmu.edu

Darko Marinov
University of Illinois

Urbana-Champaign, IL, USA
marinov@illinois.edu

Tao Xie
Peking University

Beijing, China
taoxie@pku.edu.cn

Abstract—Regression testing is widely used to check whether
software changes lead to test failures. Regression Test Prioriti-
zation (RTP) aims to order tests such that tests that are more
likely to fail are run earlier. Prior RTP techniques—which we call
hierarchy-unaware (HU)—ignored an important aspect: real test
suites are organized hierarchically, and individual tests belong
to composites that can be hierarchically nested. Prior RTP work
overlooked the runtime cost to switch across hierarchical test
compositesand used the APFDc metric, which represents the
runtime of tests till test failures, to rank orders generated by
RTP techniques. However, APFDc can misleadingly rank orders
if their runtimes differ (e.g., two orders may have different
numbers of composite switches and, consequently, runtimes).
To account for runtime differences, we propose a new metric,
HAPFDc. Unlike APFDc, HAPFDc enables proper comparison
of test orders with different runtimes by “extending” runtimes as
needed. To reduce the cost of composite switching, we introduce
hierarchy-aware (HA) RTP by presenting meta-techniques that
first prioritize composites and then tests within composites. We
evaluate HA RTP on test classes in multi-module Java and Maven
projects from two large datasets used in prior work. The results
show that our HA RTP improves both HAPFDc values and time-
based metrics over HU RTP.

Index Terms—regression test prioritization, test interleaving

I. INTRODUCTION

Regression testing is an important activity to check whether
software changes lead to test failures. Researchers have de-
veloped many techniques to improve regression testing, and
several surveys [1–5] present overviews of the proposed tech-
niques. Regression Test Prioritization (RTP) [6, 7] aims to
order, i.e., prioritize, tests in a test suite to find test failures
sooner rather than later. The motivation is to provide faster
feedback to developers, so they can debug test failures [8]
as soon as possible. Conceptually, RTP techniques use infor-
mation from one or more historical runs of the test suite,
or from recent changes, to prioritize the test suite for the
current changes. Various techniques use different kinds of
information, e.g., code coverage [6, 9], historical failures [10],
timing information [8], and black-box information [11], along
with different kinds of technologies, e.g., machine learning [5,
12, 13], information retrieval [14, 15], and peer sharing [16].

Since the two seminal papers [6, 7], RTP has been studied
with increasingly realistic experiments, substantially improv-
ing four main aspects of the studies. Specifically, to evaluate

RTP techniques, earlier work used (1) automatically generated
tests instead of manually written tests [17], (2) simulated
software evolution instead of real evolution [18], (3) mutants
or manually seeded faults instead of real test failures from
continuous-integration systems [13, 14, 19–22], and (4) met-
rics based on the number of test runs till test failures, such as
Average Percentage of Faults Detected (APFD) [9], instead of
metrics based on the runtime of tests till test failures, such as
cost-cognizant APFD (APFDc) [23].

However, all RTP techniques from prior work have ignored
the fact that software projects organize tests hierarchically,
akin to the composite design pattern [24], and switching test
execution across composites incurs runtime cost. We call prior
work Hierarchy-Unaware (HU) RTP. We define a test compos-
ite as a set of tests that share the same running configuration.
For example, most Java projects use a testing framework,
such as JUnit [25] or TestNG [26], and a build system,
such as Maven [27] or Gradle [28]: individual JUnit/TestNG
test methods belong to test classes, which themselves belong
to Maven/Gradle modules that provide the running config-
uration1. Thus, we view the test suite for a multi-module
Maven project as several test composites, one for each module.
Running test classes in a prioritized order incurs additional
cost when consecutive tests belong to different modules.

While newer RTP work evaluates techniques using metrics
(e.g., APFDc [23]) that better represent real time, their
experiments [13, 14, 16, 19, 20, 30] ignored the runtime cost of
Switching Across Tests Composites (SATC), which includes
not only the runtime to launch a new virtual machine but also
the runtime to load classes, set up and tear down tests, etc. In
fact, the SATC cost is closely related to the cost of running
each test in a new JVM: studies [31–35] have shown that
such cost can be orders of magnitude higher than running
multiple tests in one JVM. The problem of SATC costs has
been considered in pairwise testing [36], but not in prior RTP
work. By ignoring SATC costs, prior RTP work can incorrectly
rank RTP techniques [13, 14]. Only one prior study [14] used

1Our evaluation uses Java projects with JUnit and Maven, but the hier-
archical organization is widespread in other programming languages, testing
frameworks, and build systems, e.g., pytest [29] for Python has test functions
that belong to test classes that belong to test files that belong to test directories.



a non-zero cost (but a low, constant value of 5.8 milliseconds)
for switching between any two test classes, whether from the
same or different modules. However, we find that the SATC
cost can substantially affect the test-suite runtime—the total
runtime between starting to run tests and receiving the test
results—when the same test suite is run in orders with different
SATC costs (Section VI-B).

To properly evaluate RTP techniques, we derived a new
metric, Hierarchy-aware APFDc (HAPFDc), which enables
the comparison of test orders with different test-suite runtimes.
Traditionally, researchers generated orders with different RTP
techniques and compared the orders’ APFDc values to rank
RTP techniques. If two (or more) orders have the same test-
suite runtime, then comparing them by APFDc gives the
same ranking as comparing them by the average time to
faults [37]. However, different orders of the same test suite
often have different runtimes. HAPFDc improves on APFDc

to enable comparison of test orders with different test-suite
runtimes, intuitively by “extending” faster test orders to match
the slowest test order from a given set of orders (Section II).

To reduce the high SATC cost, we introduce Hierarchy-
Aware (HA) RTP, which first prioritizes test composites (e.g.,
Maven modules) and then tests within composites (e.g., JU-
nit test classes). To prioritize composites, we present a set
of meta-techniques. HA RTP applies these meta-techniques
to prioritize composites and applies prior RTP techniques
to prioritize tests within each composite. We use the term
“meta-techniques” as they can be combined with many prior
RTP techniques. The specific meta-techniques that we present
utilize the test prioritization scores already provided in the
two datasets used in our evaluation [14, 19]. Unlike HU RTP,
which can interleave tests across composites, HA RTP does
not interleave tests across composites and produces orders with
the least possible number of composite switches (Figure 1).

We compare our meta-techniques on two large datasets [14,
19] that include test failures observed on Travis CI for dozens
of open-source projects over multiple years. The datasets
are used in recent papers [13, 14, 19, 20, 38]. From these
two datasets, we obtain 2,357 jobs, where each job runs the
test suites from a multi-module Maven project and contains
real test failures. Using these jobs, we compare our meta-
techniques and find that the meta-technique that greedily puts
the test with the lowest RTP score last (i.e., choose the “worst”
test and all other tests in its module to run last) performs
the best. Moreover, to compare HA and HU RTP when the
SATC cost is actually measured, we obtain 43 (newer) jobs
from 28 projects and run their tests. For these jobs, we
compare the orders from HA RTP with the orders from HU
RTP [13, 14, 19]. The results show that using HA RTP to
reduce the SATC cost leads to different rankings of RTP
techniques (e.g., the best RTP technique changes) and higher
HAPFDc values, due to the number of module switches: on
average, 33.6 for HU RTP vs. just 5.8 for HA RTP.

Our paper makes not only technical contributions to RTP
but also a methodological contribution for research on this
topic, by running the generated test orders to properly account

Fig. 1. HU vs. HA RTP example with three composites. Tests with the same
color belong to the same composite.

for their runtimes and not ignoring substantial SATC runtime
costs. Recommendations for improving research methodology
have a long tradition [39]. Some examples on related topics
include automated repair [40], defect prediction [41], mutation
testing [42], test-suite reduction [43], and statistical analy-
sis [44]. In fact, even RTP has been advancing over time,
e.g., moving from artificial software evolution or faults to real
evolution [18] and real failures [13, 14, 19].

Overall, this paper makes the following main contributions:
Test Hierarchy: We point out an important aspect of hierar-
chical test organization, ignored by prior RTP research.
Meta-Techniques: We propose meta-techniques to make prior
RTP techniques hierarchy-aware, reducing their SATC cost.
Evaluation: We empirically show that hierarchy-aware orders
are better than hierarchy-unaware orders in multiple aspects.

Our implementation of the HA RTP and the scripts that we
use for our empirical evaluation are publicly available [45].

II. METRIC SELECTION

Prior RTP work often used cost-cognizant Average Percent-
age of Faults Detected (APFDc) [4, 23, 46–49] and recently
used Average Time To Fault (ATTF) [37] to rank test orders. A
higher APFDc value should indicate that a test order is better,
i.e., finds all faults in the test suite earlier on average. APFDc

is calculated as the area under the curve of the percentage of
faults detected against the percentage of test-suite runtime.
ATTF is calculated as the average time to detect all the faults
in a test order. Section II-A has more formal definitions.

One desirable property of APFDc that ATTF lacks is
normalization of values. Specifically, APFDc normalizes the
value to the unit range (0.000,1.000), making it easier to
compare RTP techniques across different projects and test
suites. On the other hand, one desirable property of ATTF
that APFDc lacks is the ranking of test orders based on real
time, which is what developers care about. APFDc may not
rank two (or more) orders of one test suite the same as ATTF
if the orders do not have the same runtime. In fact, orders can
have substantially different runtimes, e.g., in our experiments,
HA and HU orders differ by up to 438%.

Figure 2 shows a scenario where APFDc misleadingly
ranks test orders. Consider two test orders, O1 and O2, of
a test suite with four tests: C1.T1, C1.T2 in composite C1,
and C2.T1, C2.T2 in composite C2. In both orders, C1.T1

and C2.T1 fail and find different faults. The figure shows the
individual test runtimes. Each SATC costs 30 units of time. We



Fig. 2. APFDc, RAPFDc, and HAPFDc for two orders O1 and
O2; tests C1.T1, C1.T2, C2.T1, C2.T2 have runtimes 20, 40, 20, 10, respec-
tively; SATC cost is 30, indicated by circle with arrow; C1.T1 and C2.T1

fail. APFDc misleadingly ranks O2 as better with a higher APFDc value
even though O2 finds faults slower than O1. Unlike APFDc, RAPFDc and
HAPFDc extend O1 to reach R = 180 units of time to properly rank O1

as better. Unlike RAPFDc, APFDc and HAPFDc assume that the % of
faults detected grows linearly for failing tests.

add each SATC cost to the runtime of the next test, because it
starts later. The test-suite runtimes for O1 and O2 are 120 and
180 units of time, respectively. Therefore, the testing resource
constraint R [50] is set to 180. As seen from the figure, O1 is
better than O2 as it finds the first fault faster (at time 20 vs.
60) and the second fault in the same amount of time (110).
However, according to APFDc values, it would appear that
O2 is better as it has a higher APFDc value because O2 finds
the second fault at 61% (110/180) of its test-suite runtime,
while O1 finds it at 92% (110/120) of its test-suite runtime.

Inspired by Wang et al. [50], we derive HAPFDc based on
APFDc as a way to correct this anomaly. According to Wang
et al. [50], their RAPFDc metric can rank the techniques fairly
given a testing resource constraint even if the corresponding
test order runtimes differ. They do so by “extending” faster-
running test orders as if their test-suite runtimes were the same
as the slowest-running test order, or by “trimming” slower-
running orders so that they can actually fit in the resource
limit. HAPFDc follows this intuition of RAPFDc and extends
the test order to a resource limit by appending a dummy
passing test to the order. Figure 2 shows an example comparing
HAPFDc, APFDc, and RAPFDc. To compute HAPFDc

for O1, we first extend its runtime to be the same as O2,
and compute the APFDc on the extended order (Sub-figure
(e)). Sub-figures (e) and (f) show that HAPFDc finds O1 is
indeed better than O2 in finding faults earlier. HAPFDc differs
from RAPFDc (Sub-figures (c) and (d)) in that HAPFDc

follows APFDc and assumes that the percentage of the faults
detected grows linearly with the execution of the failing test. In
summary, HAPFDc preserves the positive aspects of APFDc

and RAPFDc to ensure a fair comparison when considering
test orders with different runtimes.

A. HAPFDc Formula

The majority of RTP papers [13, 14, 16, 19, 20, 30] (1) used
runtime to measure test costs and (2) considered the fault
severity as constant across all faults. With these two common
assumptions, the APFDc formula [23] becomes

APFDc =

∑m
i=1(

∑n
j=TFi

tj − 1
2 tTFi

)

m×
∑n

j=1 tj
(1)

where m is the number of faults, n is the number of tests, and
TFi is the first place where the ith fault is detected.

This APFDc formula does not make it explicit that the test
cost can differ across test orders. Let T be a test suite with n
tests. Let O be an order (permutation) of all tests from T . To
make the test cost explicit, we define cO(.) (or c(.) when O
is clear from the context) as the cost of a test t (cO(t)) or a
test suite T (cO(T )) under the order O. With c(.), we rewrite
APFDc (for an order O) as

APFDc =

∑m
i=1

(∑n
j=TFi

c(tj)− 1
2c(tTFi)

)
m× c(T )

= 1−
∑m

i=1(
∑TFi

j=1 c(tj)−
1
2c(tTFi

))

m× c(T )

(2)

To allow for proper ranking of different test orders even
when their runtime differs, we set the constraint from APFDc

to be the longest runtime among all the test orders under
consideration, i.e., R = max cO(T ).

HAPFDc = 1−

∑m
i=1

(∑TFi

j=1 c(tj)−
1
2c(tTFi)

)
m×R

(3)

We can then rewrite HAPFDc to RAPFDc [50], which
assumes that the faults are detected only at the end of a failing
test execution as

RAPFDc = 1−
∑m

i=1

∑TFi

j=1 c(tj)

m×R
(4)

To provide some more intuition about HAPFDc and
APFDc metrics, we relate them to the ATTF metric, which
averages the time for all the failures (assuming that each failure
identifies a unique fault [37]):

ATTF =

∑m
i=1

(∑TFi

j=1 c(tj)−
1
2c(tTFi

)
)

m
(5)

Substituting ATTF into the APFDc and HAPFDc formulas:

APFDc(O) = 1− ATTF (O)

cO(T )
(6)

HAPFDc(O) = 1− ATTF (O)

R
(7)

The traditional APFDc depends on the runtime and the ATTF
of the order O. HAPFDc retains the normalization property
of APFDc, while depending on only ATTF and R, which
is irrelevant to the runtime of the current order. We prove
that HAPFDc ranks test orders the same as ATTF for all
possible sets of orders and show how RAPFDc and HAPFDc

compare to each other on our website [45].



Algorithm 1: HU & HA RTP of hierarchical test suites
1 // allTestsIn and allCompositesIn are helpers that
2 // find all tests and composites, respectively, in a test suite
3 // testsIn finds direct test children of a composite
4 Function HU_RTP(suite):
5 return sorted(allTestsIn(suite), RTPtechnique)
6 Function HA_RTP(suite):
7 // sort the composites according to the meta-technique
8 composites = sorted(allCompositesIn(suite), score)
9 sortedTests = [ ] // empty list

10 for composite in composites do
11 // sort the tests in each composite individually
12 tests = testsIn(composite)
13 sortedTests.append(sorted(tests, RTPtechnique))
14 return sortedTests
15 Function score(composite):
16 tests = testsIn(composite)
17 return metaTechnique(map(RTPtechnique, tests))

III. HA AND HU RTP ALGORITHM AND
META-TECHNIQUES

We next precisely describe Hierarchy-Unaware (HU) and
Hierarchy-Aware (HA) RTP of hierarchical test suites that
consist of tests and composites. A test is an individual atomic
test, and is what the composite design pattern [24] calls a
“leaf”. A composite has a list of “children” that can each
be either a test or (recursively) another composite. A (test)
suite is the top-level composite. HU RTP techniques treat the
suite as a list of tests, ignoring the composites to which the
tests belong; as a result, they can produce test-suite orders
that interleave tests from different composites. In contrast, HA
RTP considers the hierarchical structure of the test suite and
produces test-suite orders that do not interleave tests from
different composites.

The principle of HA RTP is general and can apply to
various existing RTP techniques, but because our evaluation
datasets [14, 19] used RTP techniques that assign a numeric
prioritization score to each test, we instantiate HU and HA
RTP utilizing the prioritization scores, shown in (Python-like
pseudo-code) Algorithm 1. Following the terminology of the
composite design pattern [24], a component is either a test or
a composite. HU_RTP first recursively finds all the tests in the
test suite and then orders the tests based on their prioritization
scores assigned by the specific RTP technique used (line 5).
HA_RTP first recursively finds all the composites and then sorts
them by their scores (line 8), which are determined by (1) the
scores of their direct test children (not including tests that
belong to their child components) and (2) the meta-technique
used to aggregate individual tests’ scores (Section III-A).
HA effectively “flattens” the hierarchical structure among
composites (but not among composites and tests), as common
in modern test runners, e.g., Maven [27] or Gradle [28]. In
each composite, HA RTP orders the tests by their scores, and
it appends the tests from different composites in a global order,
following the established composite order and test orders
within composites (lines 10-13). All sorting is done in the
descending order of scores.

In theory, developers could run tests for each composite in
parallel when testing a project with a hierarchy. The discussion

of HA or HU RTP is less meaningful in this context, because
each composite can be run individually. However, studies [51,
52] found that parallelization can lead to concurrency issues
that undermine the accuracy of the testing result. Thus, this
work considers only running composites sequentially.

A. Meta-Techniques

We propose four meta-techniques that compute a compos-
ite’s score by aggregating the scores of its test children: High-
est Total First (HTF) uses sum(scores), Highest Average
First (HAF) uses average(scores), Highest Score First
(HSF) uses max(scores), and Lowest Score Last (LSL)
uses min(scores). We call them “meta-techniques” because
they can be combined with existing RTP techniques to adapt
them from HU to HA.

The intuition is as follows. HTF is similar to the traditional
“total” techniques [9] that first run conceptually the largest
test. HAF is similar to the traditional “cost-cognizant” tech-
niques [23] that consider the potential value of the test relative
to its cost – in our case, a composite relative to the number of
tests; we do not explicitly include cost in HAF because many
RTP techniques already include cost. HSF greedily prioritizes
the test with the highest score first in the test-suite order, while
obeying the constraint of HA. LSL is the dual of HSF, greedily
putting the test with the lowest score last.

IV. SPECIALIZING HA RTP FOR MAVEN

The general principles of HA RTP apply in all cases
that involve hierarchical organization of test suites with test
composites. In this section, we focus in more detail on multi-
module Maven projects, because Maven is the most popular
build system for Java projects [53] and our two evaluation
datasets include such projects. In fact, multi-module Maven
projects are prevalent. Of the top-starred 100 Java, Maven-
based projects on GitHub, 73 had multiple modules [45] with
an average of 19 modules per project.

We next describe how our general HA terminology corre-
sponds to Maven projects. A test is a (JUnit) test class, and
a composite is a Maven module. Specializing Algorithm 1 for
multi-module Maven projects, the RTP techniques assign a
score to a test class, and our meta-techniques assign a score
to a Maven module, based on the scores of test classes in
the module. By default, running mvn test at the top level
visits the modules one by one to run each test suite. For
each module, Maven creates a new JVM, runs the tests, and
shuts down the JVM at the end. The creation and shutdown of
JVMs incur runtime costs. The SATC cost between modules
includes runtime cost to launch a new JVM2, load classes,
potentially load other files from disk into memory, perform
just-in-time compilation, set up and tear down a test, etc.
The overall switch runtime can greatly vary due to module
switches in test orders with and without interleavings. Test
orders with interleavings can have much longer runtime due

2While the cost to launch a JVM is small (< 100 millisecond on a modern
JVM), the other costs can be substantial, hence in most Maven modules, all
tests run in one JVM rather than each test in an isolated JVM [31–35, 54].



TABLE I
EFFECTIVE TECHNIQUES FROM PRIOR WORK [13, 14].

Technique Criteria from Peng et al. [14]
CCHIR execution time, historical failures, and IR score
CCH execution time and historical failures
HIR historical failures and IR score
CCIR execution time and IR score
QTF execution time
OptIR information-retrieval (IR) score
HIS historical failures
Technique Criteria from Elsner et al. [13]
MFFr historical (test, file)-failures and failures
MFF historical (test, file)-failures
AD average duration (execution time)
LT most recent pass-to-fail transition
HIS historical failures

to their larger numbers of module switches compared to those
without interleavings (Section VI-B).

To run test-suite orders that interleave composites, devel-
opers can either (1) invoke a test runner multiple times and
run consecutive test classes from the same module together,
referred to as Multi-JVM mode; or (2) invoke a test runner
once and run all test classes together, referred to as One-
JVM mode. The latter can be much faster than the former,
due to the SATC cost. However, attempting to run all tests
in one JVM can introduce many false positives and false
negatives (Section VI-E), because different modules can have
different classpaths and working directories. Our experiments
focus primarily on the former, motivated by the fact that
machine cost is much cheaper than that of manual test-failure
inspections [55]. We describe an approach to invoke a test
runner multiple times that is most favorable, in terms of
runtime, for HU orders that interleave classes from different
modules (Section V-B2).

V. EVALUATION SETUP

We aim to answer the following research questions (RQs):
RQ1: How do our meta-techniques compare?
RQ2: How do HA and HU RTP compare?
RQ3: Can APFDc mislead comparisons?
RQ4: Can ignoring SATC costs mislead comparisons?
RQ5: How do Multi-JVM and One-JVM modes compare?

Our overall goal is to evaluate which meta-technique pro-
duces the best HA RTP and understand whether assumptions
and metrics from prior work may provide misleading results.

A. Study Subjects

As we are the first to study HA RTP, we discuss next how
we build a dataset for our study.

1) RQ1: To answer RQ1, we use two public datasets, one
provided by Peng et al. [14], which we call IRBRTP because
it was originally used to evaluate information-retrieval (IR)
based RTP techniques, and RTPTorrent provided by Mattis et
al. [13, 19]. We selected these two datasets because they are
recent and among the largest datasets for RTP.
Modules and Jobs Selection. Both datasets are constructed
from GitHub projects that use Java and Maven, filtering for
projects that used Travis CI [56], to obtain a dataset with real

test failures instead of artificial ones. Each build on Travis
CI can have multiple jobs, which typically run the same code
version but with different commands or same commands in
different environments. Each job has its own individual overall
result (pass, fail, or error) and may run test suites for a project
with one or more Maven modules. Each test class in a test suite
has its own result (pass, fail, or error).

Because our meta-techniques (described in Section III-A)
order the modules, we select all jobs from the two datasets
that have test classes in more than one module. IRBRTP
contains all the necessary data (e.g., test coverage, runtime,
fault history) to reproduce the numbers reported in the original
paper [14]; we could reproduce the results from Peng et
al. [14] up to the last reported digit. To understand the SATC
costs, we need to know the module that each test class
belongs to. Interestingly enough, IRBRTP already includes
the module name for each test class—the authors computed
this information but ignored it during prioritization. IRBRTP
has in total 2,980 jobs in 123 projects, with 1,368 jobs in 71
projects having test classes in more than one module. Upon
inspection of these jobs, we find that 404 jobs in the dataset
have a wrong mapping from the test class names to modules,
because one test class name can appear in multiple modules,
and IRBRTP did not carefully resolve such cases. We make
the list of projects and jobs with incorrect mappings publicly
available [45] and share it with the authors. Finally, we obtain
964 jobs from 66 projects from IRBRTP.

RTPTorrent also contains a wealth of data However, RTP-
Torrent does not include the Maven module names for tests. In
addition, the raw logs for some of the jobs are not available.
We develop an approach using Z3 [57] to compute likely
module names and publicly release an extension [45] of
RTPTorrent to facilitate future RTP research, in particular for
developing and evaluating future HA RTP. We omit the details
of the approach due to space limit. The extension contains the
module assignment for 1,393 jobs from RTPTorrent.

An important point is that the 964 jobs from IRBRTP and
1,393 jobs from RTPTorrent do not overlap. In fact, these jobs
come from a non-overlapping set of projects (66 from IRBRTP
and 13 from RTPTorrent) except for one shared project that
has no common job in the two datasets (because they focus on
different time periods, with IRBRTP having generally newer
jobs than RTPTorrent).
RTP Techniques. Both datasets were used to compare several
RTP techniques with the information from the CI order—the
default order run by the job, whose results are shown in the
Travis logs. Based on the CI order included in the datasets,
with the runtime and the expected execution result for each
test, one can compute APFDc for the orders generated by
various techniques. For IRBRTP, the authors identified seven
test prioritization techniques as the most effective (Table I).
The original RTPTorrent paper [19] aimed mainly to release a
dataset and had a relatively small comparison. Elsner et al. [13]
presented a much bigger evaluation using RTPTorrent. They
identified five RTP techniques as the most effective, one of
which overlaps with a technique from Peng et al. [14] (Table I).



TABLE II
STATISTICS FOR EACH JOB FOR RQ2-RQ5. “TSR” IS THE TEST-SUITE

RUNTIME (IN SEC) AVERAGED ACROSS ALL HU ORDERS.
# Test Class # JVMs TSR

ID Project Fails / Total HA HU HU
J1 abel533/Mapper 10 / 41 2 9.3 8.3
J2 apache/incubator-dubbo 1 / 142 14 77.6 175.0
J3 apache/incubator-dubbo 1 / 142 14 80.1 176.5
J4 apache/incubator-dubbo... 1 / 13 2 4.9 9.5
J5 apache/incubator-dubbo... 1 / 13 2 4.9 9.5
J6 apache/incubator-dubbo... 1 / 13 2 4.9 9.5
J7 aws/aws-sdk-java 1 / 190 3 49.7 210.0
J8 aws/aws-sdk-java 1 / 190 3 47.3 210.8
J9 aws/aws-sdk-java 1 / 190 3 48.4 211.2
J10 demoiselle/framework 2 / 8 2 2.4 4.0
J11 elasticjob/elastic-job-lite 1 / 89 3 37.7 54.1
J12 gchq/Gaffer 1 / 75 3 18.7 55.5
J13 google/auto 1 / 31 4 14.0 21.5
J14 google/auto 1 / 31 4 16.3 23.5
J15 hs-web/hsweb-framework 1 / 28 11 21.9 38.7
J16 jtablesaw/tablesaw 2 / 47 2 5.1 5.8
J17 LiveRamp/hank 1 / 63 3 27.3 175.6
J18 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.0
J19 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.1
J20 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.0
J21 lukas-krecan/JsonUnit 1 / 17 5 13.7 8.1
J22 magefree/mage 1 / 816 6 26.4 189.8
J23 mitreid-connect/OpenID... 1 / 38 3 20.9 10.4
J24 ModeShape/modeshape 6 / 189 5 72.3 253.2
J25 networknt/light-4j 2 / 16 4 10.7 4.4
J26 ocpsoft/rewrite 74 / 151 17 107.3 76.7
J27 ocpsoft/rewrite 63 / 140 17 93.4 63.0
J28 ocpsoft/rewrite 73 / 150 17 98.3 70.0
J29 ocpsoft/rewrite 73 / 150 17 99.1 68.5
J30 ocpsoft/rewrite 33 / 67 9 29.3 15.0
J31 onelogin/java-saml 2 / 15 2 4.0 7.6
J32 onelogin/java-saml 2 / 15 2 4.0 7.7
J33 orbit/orbit 2 / 60 5 13.7 105.7
J34 pippo-java/pippo 1 / 11 2 2.7 1.9
J35 prometheus/client java 2 / 36 16 26.0 30.1
J36 protegeproject/protege 4 / 44 2 4.4 4.6
J37 rapidoid/rapidoid 1 / 82 9 50.3 190.7
J38 RIPE-NCC/whois 41 / 320 7 179.6 149.9
J39 sismics/reader 2 / 25 3 7.1 96.6
J40 spring-projects/spring... 4 / 117 2 31.0 31.8
J41 spring-projects/spring... 4 / 117 2 28.4 31.4
J42 st-js/st-js 4 / 38 3 7.9 4.5
J43 teamed/qulice 1 / 5 3 3.9 13.5
Sum × 2 / Arith. Mean × 3 428 / 3976 5.8 33.6 66.5

We evaluate as many techniques as possible on both datasets
using only the information provided by the authors. MFFr,
MFF, AD, and LT from Elsner et al. [13] require information
from passing builds, which IRBRTP does not have. On the
other hand, CCHIR, HIR, CCIR, and OptIR from Peng et
al. [14] require test IR information, which RTPTorrent does
not have. In total, we evaluate all seven technique from Peng et
al. [14] on IRBRTP, and five techniques from Elsner et al. [13]
and two techniques from Peng et al. [14] on RTPTorrent.

2) RQ2-RQ5: As RQ2-RQ5 all involve the actual test-suite
runtimes, we use the same dataset for them (but a different one
than RQ1). Unlike RQ1 where the number of module switches
for each order is exactly the same for all meta-techniques,
the number of module switches between HA RTP and HU
RTP can differ for RQ2-RQ4 (average of 5.8 switches for HA
compared to 33.6 switches for HU). Similarly, for RQ5, the

TABLE III
SELECTION PROCEDURE TO GET 43 JOBS FROM IRBRTP.

Filter Applied # Jobs # Projects
All projects 2,980 123
Multi-module projects 1,368 71
Recent 5 SHAs ≤ 111 71
Compile successfully 64 45
Corrected orders in IRBRTP 58 39
Reproducible test failures 44 28
No duplicate 43 28

two modes to run tests have a different number of switches
(i.e., One-JVM mode has zero switches while Multi-JVM
mode can have many). These differences in the number of
module switches can influence the overall test suite runtimes.

To obtain actual test suite runtimes, we look for jobs that
can be run. We cannot run all the jobs because of dependency
issues as some of them are several years old. We use the
IRBRTP dataset instead of RTPTorrent as the former is more
recent and more likely to compile and run. Of the 123 projects
in IRBRTP, we start with selecting 71 that have more than
one module with test classes. We try compiling each of these
project using the five most recent GitHub commit SHAs to
obtain the most recent SHA in which the project compiles.
We find that 45 projects successfully compile in one of the
five most recent SHAs. We do not attempt to compile more
than the five most recent SHAs because projects that do not
compile on the most recent versions are less likely to compile
on even older versions (e.g., 39 of our 45 projects compiled
on the most recent SHA, while the other 6 projects compiled
between the second and fifth most recent SHA). We then filter
out 6 projects that have a wrong mapping from the test class
names to modules in the IRBRTP dataset.

For each of the remaining 39 projects, we run 36 test orders
on the project and SHA of each job: 28 orders generated
by combining 4 meta-techniques (Section III-A) and 7 RTP
techniques from Table I, 1 CI order from the original dataset,
and 7 orders generated directly by the 7 (HU) RTP techniques.
We call the orders directly generated by the 7 RTP techniques
HU orders, and the others HA orders. We run each test order
five times to filter out tests that exhibit flaky test outcomes [58]
and to filter out jobs that have no failure in every order. We
obtain 44 jobs (from 28 projects) after such filtering. We then
inspect and filter out 1 job that has the same 36 orders. In
total, we obtain a dataset of 43 jobs from 28 projects. Table II
shows statistics for these jobs, and Table III summarizes how
we obtained these jobs.

We run all the timing experiments on various isolated virtual
machines with the same configuration: 4CPUs, 8GB RAM,
2.5 GHz/3.2 GHz clock speed, and Intel Xeon processor. The
experiment is conducted under Java 1.8.0 311 and Maven 3.8.
To reduce runtime noise from affecting our results, we run
every order five times. We do not run more because we observe
that the runtime of each order is relatively stable in five runs—
the average Coefficient of Variance [59] of the runtimes among
all orders from all 43 jobs is 0.04 seconds.

Table II shows the real times to run the tests for these jobs.
These times are obtained with our scripts that aim to minimize



the time for HU techniques. Running without our scripts, e.g.,
using the existing mvn commands, would make these times
longer. One can question (1) whether relatively short times
(up to a few minutes) make it relevant to prioritize these test
suites, and (2) whether HA provides benefit over HU only
for short-running test suites. For (1), we note that these same
datasets were used in multiple recent studies on RTP [13, 14,
19, 20]; the key contributions are novel algorithms/techniques
that are expected to scale well (or even better) on longer-
running test suites. We also note that our experiments run each
test suite for dozens of various configurations (e.g., the choices
of techniques and meta-techniques, plus repeating experiments
five times), so the overall machine time for experiments is
vastly greater than the runtime for one test-suite run. For (2),
in Section VI-B, we study and find that the benefit that HA
provides over HU does not go down with the test-suite length;
if anything, the relationship is slightly positive for these jobs
(but the correlation is not statistically significant).

B. Methodology

1) RQ1: For the jobs from the two datasets (Section V-A1),
we use the selected techniques to reproduce the HU experi-
ments [13, 14, 19] and add our HA experiments. We follow all
experimental settings from Peng et al. [14] for both datasets:
breaking ties based on the CI test order rather than randomly,
prioritizing newly added before existing tests, adding a small
overhead for test runtimes (especially for tests whose runtime
was seemingly 0), using specific settings for information-
retrieval techniques, etc.

To evaluate RQ1, we rely on APFDc [23] as it is the
most popular RTP metric that takes the test-suite runtimes into
account. We do not evaluate our proposed metric, HAPFDc,
because we are comparing only meta-techniques, which have
no interleavings. If the number of interleavings is similar,
then the test-suite runtimes of different orders are similar, and
consequently, each order’s HAPFDc is similar to APFDc.

2) RQ2-RQ5: To evaluate RQ2-RQ5, we use HAPFDc

as it takes into account that different orders of the same
test suite can have different runtimes. For RQ3, we compare
APFDc [23] to HAPFDc. For RQ4, we evaluate how HA
RTP compares to HU RTP when ignoring SATC costs.

For RQ2-RQ4, we run tests in only Multi-JVM mode, which
invokes a test runner multiple times (i.e., runs test classes
from the same module together before running test classes
in another module). In RQ5, we evaluate how one may run all
test classes in one JVM, referred to as One-JVM mode, and
show why that is likely less desirable than Multi-JVM mode.
Multi-JVM Mode. A natural way to run the orders in Multi-
JVM mode is to use the existing build systems such as
Maven and Gradle, but these build systems do not currently
support running orders that interleave tests from composites.
For example, to run such an order in Maven, one has to
invoke mvn test multiple times. Since mvn test does more
tasks than just running the tests (e.g., checking coding style,
checking re-compilation), launching multiple mvn test adds
unnecessary runtime costs to HU orders. To fairly compare

different orders (with or without interleavings), we do not use
build systems to run the orders and instead run the orders in
a more favorable way in terms of the SATC cost.

Our scripts to run Multi-JVM mode minimize the number of
JVMs (and thus the runtime costs from JVM and test startups
and teardowns) that need to be run for a given order, by
running all consecutive tests from the same module in one
JVM before switching to another JVM. For example, given
the order ⟨T1, T2, T3, T4⟩, where tests T1, T2, and T4 belong
to one module, and T3 belongs to another module, our scripts
run three JVMs: ⟨T1, T2⟩, ⟨T3⟩, and ⟨T4⟩. To run the tests in
each module, we run java JUnitCore T_1 T_2... with
as many consecutive test classes as possible in the module
directory. Each java command sets up a JVM, runs all tests,
and tears down the JVM.
One-JVM Mode. One-JVM mode follows a similar process
as Multi-JVM but runs all the tests in one JVM with the
concatenation of the classpaths of all modules at the project
base directory.
Timing. To collect timing information for each test class and
the overhead between switching classes, we use a simple
customized JUnit Wrapper that lets JUnit core run each
test class one by one, and prints the test class info before
running it. Our wrapper outputs the test class start time in the
testRunStarted method, and collects its end time in the
testRunFinished method.

3) All RQs: We use one-to-one failure-to-fault mapping for
all the experiments, following the default from prior work [14].
We also aggregate the metric values across all projects when
comparing RTP techniques. We obtain a metric value for each
order generated by RTP techniques on each job. Following
prior work [14], we (1) first compute metric value for each
project as the arithmetic mean of the values for each job,
thus obtaining a distribution of values for a technique; and
(2) use two statistic tests to compare the distributions for the
techniques. One statistic we use is the arithmetic mean of the
values across all projects. (Computing the mean first for each
project and then across projects provides an “unweighted”
average [14], making the results more representative.)

Another statistical approach we use to compare the
techniques is the Tukey’s Honest Significant Difference
test [60]. We aggregate the score of all the techniques (or
meta+technique pairs), including a default run of the CI order,
into a single batch, and apply the Tukey’s test on them. The
test compares multiple distributions of metric values to identify
which differences are statistically significant. Specifically, the
test assigns to each distribution one or more letters to indicate
how it overlaps with the others. For example, if four techniques
T1, T2, T3, and T4 obtain letters “A”, “A”, “AB”, and “B”,
respectively, then T1 and T2 are significantly better than T4,
while T3 partly overlaps with the other three and does not
statistically significantly differ.

Tables IV and V show the results for each combination of
meta-technique and RTP technique (HA RTP). Each cell shows
the unweighted average metric value of the technique, and we
highlight in yellow color the cells of the technique(s) from the



TABLE IV
COMPARING META-TECHNIQUES ON TWO DATASETS AND A VARIETY OF

BEST TECHNIQUES FROM PRIOR WORK [13, 14].

HTF HAF HSF LSL
964 jobs from IRBRTP, CI=.225
CCHIR .612 .653 .635 .711
CCH .564 .598 .566 .682
HIR .594 .720 .665 .729
CCIR .581 .616 .606 .683
QTF .665 .585 .517 .637
OptIR .512 .650 .601 .669
HIS .497 .547 .537 .384
Average .575 .624 .590 .642
1,393 jobs from RTPTorrent, CI=.230
CCH .583 .586 .582 .777
MFF .730 .743 .731 .766
MFFr .719 .730 .740 .747
HIS .656 .681 .669 .737
LT .670 .671 .604 .673
QTF .647 .471 .456 .580
AD .663 .476 .477 .580
Average .666 .622 .608 .694

top group in Tukey’s test results (i.e., technique(s) that obtain
the sole “A” letter). The comparison of techniques should be
primarily based on the statistical results of the Tukey’s test, but
we present the unweighted average for a simple comparison.

VI. EVALUATION RESULTS

A. RQ1: Comparison of Meta-Techniques

Table IV shows the APFDc values for each pair of meta-
technique and technique, in short meta+technique pair, aver-
aged over all projects for each dataset. The average values are
rather similar across all meta-techniques, and all are higher
than the CI value, clearly showing the benefit of using any
meta-technique. However, the Tukey’s test for the APFDc

values shows that for each dataset only one meta+technique
pair, LSL+HIR for IRBRTP and LSL+CCH for RTPTorrent,
is in the top group, which we highlight in yellow color in each
section of Table IV. The averages of the APFDc values also
show LSL as the best meta-technique, with the highest value
for five out of seven RTP techniques for each dataset. The fact
that LSL is the best for two different datasets, using different
techniques (although three of the seven techniques overlap),
increases our confidence that LSL is the best meta-technique.

LSL is the most counter-intuitive meta-technique, effec-
tively prioritizing “worst” tests at the end rather than “best”
tests at the start. Our finding that LSL is the best meta-
technique is conceptually similar to the finding by Koru
et al. [61], who report that to find faults faster in manual
inspection, one should inspect source files by increasing size
with larger files at the end because they are the “worst”, having
fewer faults relative to their size.
A1: The meta-techniques are similar, but LSL is often the best.

B. RQ2: Hierarchy-Aware vs. Hierarchy-Unaware RTP

We next compare our HA meta-techniques and the tradi-
tional HU RTP on the 43 jobs from IRBRTP where we could
measure the actual test runtimes (including module switch
cost). The first section of Table V shows the HAPFDc values
averaged over all projects. The Tukey’s test for these HAPFDc

TABLE V
COMPARING HA AND HU RTP FOR 43 JOBS FROM IRBRTP USING

VARIOUS METRICS AND SATC COSTS; 1ST SECTION SHOWS A proper
COMPARISON; 2ND AND 3RD SECTIONS USE misleading COMPARISONS.

HTF HAF HSF LSL HU
HAPFDc, actual time & SATC cost, CI=.586
CCHIR .751 .801 .761 .790 .671
CCH .720 .760 .732 .771 .649
HIR .749 .771 .781 .756 .750
CCIR .750 .797 .764 .812 .626
QTF .769 .748 .748 .793 .613
OptIR .724 .780 .745 .733 .697
HIS .715 .729 .700 .694 .654
Average .740 .770 .747 .764 .666
APFDc, actual time & SATC cost, CI=.311
CCHIR .568 .615 .588 .633 .627
CCH .521 .559 .536 .617 .598
HIR .572 .630 .640 .583 .709
CCIR .564 .605 .568 .659 .583
QTF .586 .546 .533 .641 .560
OptIR .529 .631 .551 .562 .657
HIS .532 .550 .513 .496 .493
Average .553 .591 .561 .599 .604
(H)APFDc, CI time & const SATC cost, CI=.274
CCHIR .687 .720 .686 .799 .852
CCH .631 .681 .612 .782 .835
HIR .617 .759 .730 .719 .799
CCIR .609 .658 .652 .800 .793
QTF .734 .647 .575 .768 .755
OptIR .516 .720 .609 .697 .772
HIS .524 .570 .551 .400 .564
Average .617 .679 .631 .709 .767

Fig. 3. Scatter plot of the test suite runtimes (ratio to CI) and HAPFDc

scores under different meta+technique pairs and the Pareto frontier.

values shows that two meta+technique pairs (LSL+CCIR,
HAF+CCHIR), both HA, are in the top group. Comparing
the performance of HA and HU RTP, namely the first four
columns and the last column in Table V, we find that for
every technique, HA meta-techniques almost always achieve
a higher HAPFDc value than HU. Additionally, the Tukey’s
test indicates a statistically significant gap between the per-
formance of HA and HU RTP. Due to space constraints, we
show how Table V’s results change with the RAPFDc metric
on our website [45]; LSL is still the best.

In practice, testers care about not only HAPFDc (to find
failures faster) but also test-suite runtime (especially if there is
no failure). Figure 3 plots both HAPFDc values and test-suite
runtimes (geometric mean of test-suite runtime normalized



Fig. 4. Scatter plot showing the benefit of HA over HU against test-suite
runtime (TSR) of HU techniques. The non-negative slope shows a non-
diminishing benefit as TSR increases for bigger jobs.

to the run of the CI order) together, where each mark is
a meta+technique pair, with the shape encoding the meta-
technique and the color encoding the technique. We also
show the Pareto frontier, which provides a set of optimal
meta+technique pairs for both HAPFDc value and test-suite
runtime. The frontier contains LSL+CCIR, LSL+QTF, and
LSL+CCHIR, which supports the earlier statistical test result
that LSL is the best.

One may question whether the benefit of HA over HU
generalizes for projects with larger test-suite runtimes. Fig-
ure 4 plots the benefit against the test-suite runtime. Each
point corresponds to a job. The x coordinate is the average
test-suite runtimes of HU techniques, and the y coordinate
is the difference of the average HAPFDc for HA and HU
techniques (higher is better for HA) for the job. The red dotted
horizontal line shows the y = 0 boundary where HA and HU
perform equally on average. The green line shows the best
line fit for the plot: it has a positive slope (though not high,
0.0002) suggesting that the benefit of HA over HU does not
diminish with the increase of test-suite runtime. To evaluate
the correlation between the benefit of HA over HU and the
test-suite runtime, we calculate the Spearman coefficient [62],
resulting in 0.27 for all techniques. The positivity further
confirms that the benefit does not diminish.
A2: HA RTP outperforms HU RTP in terms of HAPFDc and
test-suite runtimes.

C. RQ3: Traditional Metric is Misleading

If we use APFDc as the evaluation metric, we reach a
different, misleading conclusion about HA vs. HU RTP. The
second section of Table V shows the results. We apply the
Tukey’s statistical test only on values within each section not
across the sections. According to the Tukey’s test results for
APFDc values, many more meta+techniques, and some HU
techniques, join top group, which does not match the results
derived from HAPFDc values. LSL does not stand out among
meta-techniques, and moreover the difference between HA and
HU shrinks, with HU appearing even slightly better.

While HAPFDc and APFDc values should not be di-
rectly compared, we can still contrast their values because
both are normalized to .000–1.000. For HA meta-techniques,

the APFDc values are much lower than the corresponding
HAPFDc values. The reason is the test-suite runtimes, which
are much higher (∼1.5X on average) for HU orders than for
HA orders. Effectively, when comparing HA orders with HU
orders, R from HAPFDc formula (3) is much larger than
c(T ) from APFDc formula (2). As a result, for HU, the
APFDc values are only slightly lower than the correspond-
ing HAPFDc values. Recall that APFDc does not properly
account for the test-suite runtime and, instead, uses for each
order its own test-suite runtime as the normalizing factor in
the denominator of the formula. Overall, the inconsistency of
results when using APFDc and HAPFDc metrics indicates
that using APFDc as the key metric can distort the comparison
of RTP orders and techniques.
A3: We find that APFDc and HAPFDc do not get the same
results and that APFDc can misleadingly rank test orders and
RTP techniques, hence HAPFDc is needed.

D. RQ4: Importance of SATC Cost

If we assume that the SATC cost is constant, we also reach a
different, even more misleading conclusion about HA vs. HU
RTP. The approach common in prior work [13, 14, 19] that
evaluated different techniques based on the data from Travis
logs [56] assumes the runtime of each test is the same as it
was in the Travis log. Additionally, Peng et al. [14] add the
overhead for switching between any two test classes to be
a constant (5.8ms), even for classes from different modules,
because the overhead information is missing in Travis logs.
They use the APFDc metric, but in their model (i.e., assuming
test runtimes to be the same across orders, with constant SATC
cost of 0 or almost 0), the test-suite runtime is the same across
all orders, and thus HAPFDc and APFDc values are exactly
the same. We use the notation (H)APFDc to refer to this fact.

The third section of Table V shows the results for this
model. The Tukey’s test has HU CCHIR and HU CCH as
the two best pairs. This result does not match the pairs that
are in the top group when evaluating properly with HAPFDc

and actual time and SATC cost: in the first section of Table V,
HU is never in the top group. In fact, in the first section, HU
RTP is worse than every HA meta-technique for every one of
the seven techniques. In contrast, in the third section, HU RTP
(specifically CCHIR, CCH, and HIR) appears to be better than
every HA meta+technique when we ignore the SATC cost.

While this model incorrectly compares HA and HU RTP,
it still ranked HA meta+techniques among themselves (not
against HU) about the same as the proper model (e.g., the
HA meta+technique with the highest (H)APFDc value is still
from LSL). The reason is that HA meta-techniques generate
prioritized orders that take about the same test-suite runtime
because they have the same minimal number of module
switches (switching into and out of each module exactly once),
which validates our comparison in Table IV.
A4: Prior work often assumes zero or constant SATC cost,
which misleadingly finds that HU RTP outperforms HA RTP.



E. RQ5: One-JVM vs. Multi-JVM Mode

When we run the One-JVM mode for 43 jobs and compare
the results with the Multi-JVM mode, we find that One-
JVM can lead to a non-trivial percentage of false positives
(tests that fail in One-JVM but pass in Multi-JVM) and false
negatives (tests that pass in One-JVM but fail in Multi-JVM).
To avoid non-determinism (or flaky tests [58]) from affecting
One-JVM, we run each order in One-JVM five times and take
the intersection of false positives from the five runs and the
union of false negatives from the five runs. The average False
Discovery Rate (FDR, the number of false positives divided by
the number of failures, ignoring the jobs that show no failure in
One-JVM) of One-JVM for each meta+technique pair, across
all 43 jobs is above .35. The average False Negative Rate (the
number of false negatives divided by the number of actual
failures) is .105 for all pairs.

We find that 30 jobs (69.8% of 43 jobs) have at least one
false positive or false negative. We inspect a sample of false
positives from the One-JVM mode and find several reasons.
Classpaths: Tests from different modules may require con-
flicting classpaths. This issue often manifests in exceptions,
such as ClassDefNotFound or reflection not finding some
fields or methods [63].
Directories: Tests may expect to be run in a specific directory,
e.g., to find some resource files for the module. For example,
in job J42, the test AnnotationsTest reads a Java source file
from the path src/... and generates some Javascript code for
it. The path for this file from the project’s top-level directory
is generator/src/.... When run in the One-JVM mode,
the test fails because it cannot find the file.
Build configurations: Tests from different modules may use
different test runners, require different setups/teardowns, etc.
that are handled by Maven. When tests from different modules
are run together, it is difficult to provide correct configurations.
Program states: In One-JVM mode, the tests may create
different program states than in Multi-JVM mode. The tests
may then pass in some program states but fail in others. Such
tests are often called order-dependent (OD) flaky tests [32].
Lam et al. [54] proposed RTP techniques aware of OD tests.

We also inspect and find the causes of some false negatives
in the One-JVM mode. For example, in job J36, the setUp

of the GOProfile_TestCase test reads a file with the path
protege-desktop/src/.... This test passes only when it
is run from the top-level directory. In fact, the test actually fails
in mvn test and the Multi-JVM mode, because they run the
test in the module directory, protege-desktop, and thus the
test cannot find the file. The failure is masked in One-JVM
because it runs the test in the project’s top-level directory.
Test-Suite Runtime Differences. To understand the differ-
ences of the two modes, we focus on the 13 jobs that have no
false positive or false negative. We do not compare test-suite
runtimes for runs with different test failures, because tests may
run much slower or much faster when they fail. We find that
One-JVM reduces the time by ∼15% over Multi-JVM HA
runs, and substantially (∼43%) over the Multi-JVM HU runs.

Overall, One-JVM does not appear to be a practical alterna-
tive. The false positive rates are high; ∼34.5% of test failures
are not real, while developers usually tolerate under 10% of
false positives, e.g., in static analysis tools [64]. Additionally,
the speedup of ∼15% does not appear motivating enough when
developers may prefer test reliability; Candido et al. [51] report
a similar finding for test parallelization.
A5: One-JVM negatively affects test reliability and is not used
in practice, despite the speedups that it could provide.

VII. THREATS TO VALIDITY

We evaluate on a limited number of jobs and projects, so
the results we derive may not generalize to other projects. To
mitigate this threat, we select two datasets from prior work [13,
14, 19], which are recent and among the largest RTP datasets.

We run each test order five times to mitigate the effect of
noise. We also remove any jobs and flaky-test classes that
have different test outcomes in different runs to prevent them
from affecting the results. Although we run tests in isolated
virtual machines with identical configurations, there can be
fluctuations in the test runtimes due to physical machine
differences and other workloads on the machines. To mitigate
such concerns, we measure the runtime variance between
different runs of the same job to verify that our result is
stable. The projects that we study are relatively small. To
mitigate scalability concerns, we check that HA benefits do
not diminish with the increase of test-suite runtime.

Another threat to validity is that some jobs in the datasets
from prior work did not run all project modules. Maven by
default stops execution for the first module for which some
test fails. The modules that would have run after the failing
module may have all their tests pass or some tests fail. Thus,
our results could differ if we have also used those modules.

VIII. CONCLUSIONS

We have pointed out an important but ignored aspect of hier-
archical test organization and its impact on test-suite runtime.
More importantly, our results show that proper evaluations
of RTP should account for test orders with different SATC
costs and thus different test-suite runtimes. We propose a
new metric, HAPFDc, that allows properly comparing test-
suite orders with different test-suite runtimes. We propose four
meta-techniques that adapt existing hierarchy-unaware (HU)
RTP techniques to become hierarchy-aware (HA), and our
evaluation shows that Lowest Score Last (LSL) is often the
best. Moreover, our evaluation shows that HA orders are better
than HU orders in many aspects. We hope that our positive
results will motivate more work on HA RTP (e.g., techniques
that tolerate SATC cost for prioritization by allowing the
interleaving of tests across different composites).
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