Results

Chapter 2

  • Theorem 2.1 PNPEXP
  • Theorem 2.2 NP=cNNTIME(nc)
  • Theorem 2.3(Cook-Levin Theorem) SAT&3SAT are NP-complete.
    Hint: Snapshot expression
  • Theorem 2.4 P=NPdecision = search for LNP
  • Theorem 2.5 P=NPEXP=NEXP
    Hint: Padding

Chapter 3

  • Theorem 3.1(Time Hierarchy Theorem) f(n)logf(n)=o(g(n))DTIME(f(n))DTIME(g(n))
    Hint: Time Limit+Diagonalization
  • Theorem 3.2(Nondeterministic Time Hierarchy Theorem) f(n+1)=o(g(n))NTIME(f(n))NTIME(g(n))
    Hint: Lazy Diagonalization
  • Theorem 3.3*(Ladner’s Theorem) PNPNPPNPC P64
  • Oracle Machines (tbd)

Chapter 4

  • Theorem 4.1 DTIME(()s(n))SPACE(s(n))NSPACE(()s(n))DTIME(()2O(s(n))) P72
    Hint: Configuration Graph
  • Theorem 4.2(Space Hierarchy Theorem) f(n)=o(g(n))SPACE(f(n))SPACE(g(n)) P75
  • Theorem 4.3(Savitch’s Theorem) s(n)>logn, NSPACE(s(n))SPACE(s2(n)) P77 Hint: Configuration Graph+Recursion

Chapter 5

  • Theorem 5.1 Σip=ΠipPH=Σip P87
  • Theorem 5.2 PH-completei.PH=Σip
  • Theorem 5.3 AP=PSPACE
  • Time Space Tradeoff (tbd)
  • Oracle Definition (tbd)

Chapter 6

  • Theorem 6.1 PP/poly
  • Theorem 6.2 L is computable by a P-uniform circuit family LP
  • Theorem 6.3 L is computable by a L-uniform circuit family with polynomial size LP
  • Theorem 6.4(TM with advice decides P/poly) P/poly=c,dDTIME(nc)/nd
    Hint: Consider Hardwiring the advice
  • Theorem 6.5(Karp-Lipton Theorem) NPP/polyPH=Σ2p
    Hint: Circuit that outputs certificates
  • Theorem 6.6(Meyer’s Theorem) EXPP/polyEXP=Σ2p
  • Theorem 6.7(Hard Functions) f:{0,1}n{0,1} not computable by circuit of size 2n10n
    Hint: Probabilistic Method
  • Theorem 6.8(Non-uniform Hierarchy Theorem) 2n/n>T(n)>10T(n)>0SIZE(T(n))SIZE(T(n))
  • P completeness (tbd)
  • Circuit of exponential size (tbd)

Chapter 7

  • Theorem 7.1 ZPP=RPcoRP
  • Claim 7.2 RP,coRPBPP
  • Theorem 7.3(Error Reduction) M.P(M(x)=L(x))12+|x|cM.P(M(x)=L(x))12|x|d
  • Theorem 7.4 BPPP/poly
  • Theorem 7.5(Sipser-Gács Theorem) BPPΣ2pΠ2p Hint: Translation of valid area

Chapter 8

  • Lemma 8.1 dIP=NP
  • Theorem 8.2 AM[2]=BPNP Exercise 8.3
  • Theorem 8.3*(Goldwasser-Sipser) IP[k]AM[k+2] P134
  • Theorem 8.4 IP=PSPACE P139 Hint: Arithmetize TQBF
  • Theorem 8.5 PSPACEP/polyPSPACE=MA
  • MIP (tbd)
  • Checkers (tbd)
  • IP for permant (tbd)

Chapter 9

  • Goldreich-Levin Theorem (tbd)